
J Math Chem (2011) 49:296–324
DOI 10.1007/s10910-010-9740-0

ORIGINAL PAPER

Reconciling alternate methods for the determination
of charge distributions: a probabilistic approach
to high-dimensional least-squares approximations

Nicolas Champagnat · Chris Chipot · Erwan Faou

Received: 17 June 2010 / Accepted: 23 September 2010 / Published online: 20 October 2010
© Springer Science+Business Media, LLC 2010

Abstract We propose extensions and improvements of the statistical analysis of
distributed multipoles (SADM) algorithm put forth by Chipot et al. (Mol Phys 94:
881–895, 1998) for the derivation of distributed atomic multipoles from the quan-
tum-mechanical electrostatic potential. The method is mathematically extended to
general least-squares problems and provides an alternative approximation method
in cases where the original least-squares problem is computationally not tractable,
either because of its ill-posedness or its high-dimensionality. The solution is approxi-
mated employing a Monte Carlo method that takes the average of a random variable
defined as the solutions of random small least-squares problems drawn as subsystems
of the original problem. The conditions that ensure convergence and consistency of
the method are discussed, along with an analysis of the computational cost in specific
instances.
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1 Introduction

In the realm of the molecular modeling of complex chemical systems, atom-centered
multipole distributions constitute a popular route to simplify the description of intri-
cate electron densities. Streamlined down to their most rudimentary representation,
these densities are generally mimicked in macromolecular force fields by simple point
charges, from which, in the context of molecular simulations, Coulomb interactions
can be rapidly evaluated. Whereas nuclear charges are clearly centered onto the constit-
uent atoms, the electron charge distribution extends over the entire molecular system.
As a result, in sharp contrast with the higher-order multipole moments of a neu-
tral molecule, which, strictly speaking, are quantum-mechanical observables, atomic
charges cannot be defined univocally, in an equally rigorous fashion. They ought to
be viewed instead as a convenient construct, the purpose of which is to reduce the
complexity of molecular charge distributions by means of compact sets of parameters
providing a useful, albeit naive framework to localize specific interactions onto atomic
sites.

The ambiguous nature of atom-centered charges has, therefore, prompted the devel-
opment of alternative paths towards their determination [2]. The choice of the numer-
ical scheme ought to be dictated by three prevalent criteria, namely (1) the computa-
tional cost of the derivation, (2) the ease of implementation within the framework of
a physical model and (3) the ability of the point-charge model to reproduce properties
of interest with the desired accuracy. Under a number of circumstances, crude atomic
charges determined through inexpensive calculations are shown to be adequate. In
other, more common scenarios, for instance, in molecular simulations of complex
chemical systems, the accurate description of the electrostatic interactions at play can
be of paramount importance. The atomic charges utilized in these simulations are by
and large derived from quantum-mechanical calculations carried out at a reasonably
high level of theory, which in many cases, can be appreciably expensive. In the vast
majority of popular potential energy functions, point-charge models are derived quan-
tum-mechanically, following, in a nutshell, two distinct philosophies. On the one hand,
the numerical simulations of condensed phases imposes that solute-solvent interac-
tions be described as accurately as possible. Accordingly, in macromolecular force
fields like Charmm [3], the atomic charges are determined based on a series of inde-
pendent quantum-mechanical calculations featuring different relative positions of a
solvent molecule around the solute. On the other hand, the electrostatic potential can
be viewed as the fingerprint of the molecule, the accurate representation of which
guarantees a reliable description of intermolecular interactions. In potential energy
functions like Amber [4], point charges are derived from the molecular electrostatic
potential, exploiting the fact that the latter is a quantum-mechanical observable readily
accessible from the wave function.

In their seminal article, Cox and Williams [5] proposed an attractive approach,
whereby sets of atom-centered charges can be easily derived on the basis of a
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single-point quantum-mechanical calculation. The electrostatic potential is evaluated
on a grid of M points lying around the molecule of interest, outside the van der Waals
envelope of the latter. Restricting the multipole expansion of the electrostatic poten-
tial to the monopole term, the charges borne by the n atomic sites of the molecule
are determined by minimizing the root-mean square deviation between the reference,
quantum-mechanical quantity and its zeroth-order approximation—i.e. qi T 00

ki , where
T 00

ki = ‖xi − xk‖−1, is the potential created at point k by atomic site i . In its pio-
neering form, the algorithm handled the least-squares problem iteratively. Chirlian
and Francl subsequently proposed to resort to a non-iterative numerical scheme [6],
which obviates the need for initial guesses and solves the overdetermined system
of linear equations through matrix inversion. This route for the derivation of point-
charge models can be generalized in a straightforward fashion to higher-order multi-
poles.

The success of potential-derived charges stems in large measure from their ease of
computation and the demonstration for a host of chemical systems that they are able to
reproduce with an appreciable accuracy a variety of physical properties. This success
is, however, partially clouded by one noteworthy shortcoming of the method—point
charges borne by atoms buried in the molecule cannot be determined unambiguously
from a rudimentary least-squares fitting procedure. Symptomatically, for those molec-
ular systems, in which the contribution of the subset of buried atoms to the electrostatic
potential is ill-defined, the derived charges are in apparent violation with the commonly
accepted rules of electronegativity differences, e.g. a Cδ−–Clδ+ bond polarity in car-
bon tetrachloride, in lieu of the intuitive Cδ+–Clδ−. Bayly et al. tackled this issue
through the introduction of hyperbolic penalty functions in their fitting procedure [7].
Arguably enough, this numerical scheme addresses the symptom rather than its actual
cause. As was commented on by Francl et al. in the light of singular-value-decompo-
sition analyses [8], the matrices of the least-squares problem are rank deficient, to the
extent that statistically valid charges cannot be assigned univocally to the selected set
of atoms in the molecule.

To delve further into this issue, Chipot et al. [1] proposed an alternative
algorithm coined statistical analysis of distributed multipoles (SADM), wherein atom-
centered multipoles are also derived from the quantum-mechani-cal electrostatic
potential, yet following a somewhat different pathway than the conventional least-
squares scheme. Instead of solving directly the n × M overdetermined system of lin-
ear equations, for instance through matrix inversion, a subset of n points is drawn
amongst the M points of the grid and the corresponding n × n system of linear
equations is solved. This procedure, referred to as an experiment, is repeated with
different subsets of grid points, from whence probability distributions are obtained
for the series of multipoles being sought. Strictly speaking, each probability distri-
bution ought to be determined from Cn

M independent experiments. On account of the
computational burden, however—viz. typically, for a molecule formed by ten atoms
and a grid of 2,000 points sampling the three-dimensional space around it, this would
imply solving approximately 2.76 × 1026 systems of linear equations—only 3–5 ×
105 independent experiments are performed, which has proven heuristically to be
appropriate.
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The mathematical description of this problem is the following: denoting by (q j )
n
j=1

the unknown charges borne by the n particles, and by γ j (x) = ‖x − x j‖−1, the elec-
trostatic potential associated with each x j ∈ R

3, the least square problem consists in
finding the minimum (q j )

n
j=1 ∈ R

n of the function

R
n � a �→

M∑

i=1

| f (yi ) −
n∑

j=1

a jγ j (yi )|2, (1.1)

where (y j )
M
j=1 ∈ R

3M are the coordinates of the M external points. Here f (y j ) stands
for the approximation of the electrostatic potential at y j obtained by quantum-mechan-
ical calculations.

Instead of solving directly the problem (1.1), the SADM consists in drawing n points
y(i) amongst the M points y j , solve the n × n problem f (y(i)) = ∑n

j=1 γ j (y(i))a j ,
i = 1, . . . , n in the least squares sense and subsequently plot the distribution of each
a j . In reference, Chipot et al. [1] notice that the latter are Cauchy-like distributions
(with seemingly infinite expectation) centered around the exact solution of the original
least-squares problem. Note that this method not only provides a numerical approxi-
mation of the solution, but also a global statistical distribution that reflects the accuracy
of the physical model being utilized.

Interestingly enough, it turns out that this kind of approach can be extended to
many situations arising in computational mathematics and physics. The principle of
the SADM algorithm is in fact very general, and can be adapted to derive efficient algo-
rithms that are robust with the dimension of the underlying space of approximation.
This in turn provides new numerical methods of practical interest for high dimensional
approximation problems, where traditional least-squares methods are impossible to
implement, either because of the high dimensionality or the ill-posedness of the least-
squares problem.

The goal of the present contribution is twofold:

• Introduce a general mathematical framework, and analyze the consistency, con-
vergence and cost of the proposed algorithms in an abstract setting and in specific
situations where calculations can be made explicit (Wishart or subgaussian distri-
butions). The main outcome is that the subsystems drawn from the original system
have to be chosen rectangular and not square (as initially proposed in the SADM
method) to yield convergent and efficient algorithms. In other words, instead of
drawing n × n subsystems, we will show that in many cases of applications, it is
more interesting to draw n × n + 2 or n × 2n subsystems in order to control the
expectation and variance of the distribution.

• Apply these results to revisit and improve the SADM method. This is mainly
achieved in Sect. 5 by considering a simple, three-point charge model of water.

2 Mathematical setting

Let us now describe the problem more precisely.
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2.1 General least-squares problems

Let (�,μ) be a probability space � equipped with a probability measure μ. For a given
arbitrary function f ∈ L2(�) and n given functions γ j (x) ∈ L2(�), j = 1, . . . , n
all taking values in R, we consider the problem of approximating f (x) by a linear
combination of the functions γ j (x), j = 1, . . . , n.

Ideally, we would like to solve the problem of finding α = (α j )
n
j=1 ∈ R

n , mini-
mizing the function

R
n � a �→ ‖ f (x) −

n∑

j=1

a jγ j (x)‖2

L2(�)
. (2.1)

The actual quality of the least-squares approximation is given by the size of the residue
‖ρ(α)‖

L2(�)
where for a = (a j )

n
j=1 ∈ R

n ,

ρ(a)(x) = f (x) −
n∑

j=1

a jγ j (x). (2.2)

Many minimization problems arising in mathematics and in physics can be stated
under this form, for instance:

(a) � = [a, b]n with two real numbers a and b > a, and equipped with the mea-
sure dμ(x) = (b − a)−ndx where dx is the Lebesgue measure on R

n . Taking
γ : � → R

n+1 defined by γi (x) = xi for all i ∈ {1, . . . , n} and γn+1 ≡ 1, the
problem is equivalent to finding β ∈ R and α ∈ R

n minimizing the function

‖ f (x) − β − 〈α, x〉‖2

L2([a,b]n)

where 〈 ·, · 〉 is the standard Euclidean product in R
n . This is nothing else than a

multivariate linear interpolation.

Similarly, any polynomial approximation problem in L2([a, b]n, μ), where μ is
a weight function, can be written in the form (2.1) by taking as γ j a basis of
polynomials in dimension n.

(b) Taking � = R
n equipped with a given n-dimensional Gaussian measure leads

to many different situations: The approximation by Hermite functions in R
n if

γ j are polynomials, the approximation of f by Gaussian chirps signal [9] in the
case where γ j (x) are oscillating functions of x , or alternatively approximation
by Gaussian wavepackets functions [10] in the context of molecular dynamics.

(c) Consider � = {1, . . . , M} with M 
 n equipped with the uniform probability
measure M−1 ∑M

i=1 δi . In this case, an application f is represented by a vector
b ∈ R

M , whereas γ is represented by a matrix A with n columns and M lines.
The problem is then equivalent to the problem of finding α ∈ R

n that minimizes

‖Aα − b‖2

2
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where ‖·‖
2

is the Euclidean norm on R
M . This corresponds to the case described

in (1.1).
(d) Consider � = R

n ×�′ equipped with the measure μ⊗ν where μ and ν are prob-
ability measures on R

n and �′, respectively. Taking f (x, ω′) = h(x) + X (ω′)
where X (ω′) is a given random variable on �′, and γ j (x, ω′) = x j for j =
1, . . . , n yields the problem of minimizing

min
α∈Rn

E

[
‖〈α, x〉 − f (x, ω′)‖2

L2(Rn)

]
(2.3)

which corresponds to the linear regression of a function observed with some
independent noise.

The problem (2.1) is equivalent to solving the linear equation

〈γ, γ T 〉L2α = 〈γ, f 〉L2

where α = (αi )
n
i=1 and 〈γ, γ T 〉L2 is the n × n matrix with coefficients 〈γi , γ j 〉L2 ,

i, j = 1, . . . , n.
If the family (γi (x))n

i=1 defines a full rank set of elements of L2(�), the matrix
〈γ, γ T 〉L2 is invertible, and the solution of the previous equation reads

α = 〈γ, γ T 〉−1
L2 · 〈γ, f 〉L2 . (2.4)

Apart from specific situations, where, for instance, the γ j can be assumed orthog-
onal, the numerical approximation of (2.4) is extremely costly with respect to the
dimension of � (see for instance [11]). Typically, discretizations of problems of the
form (a) yields a problem of the form (c) with m = N n where N is the number of
interpolation points in [a, b] needed to approximate the L2 integrals. For n = 30, this
method is not tractable in practice, even if N = 2.

To avoid this curse of dimensionality, an alternative would consist in approximating
the integrals in the formula (2.4) by using Monte Carlo methods. In large dimension,
the matrix 〈γ, γ T 〉L2 is, however, often ill-conditioned, and obtaining a correct approx-
imation of the inverse of this matrix might require in practice a very large number of
draws to minimize the error in the value of α.

2.2 Principle of the algorithm

In this abstract mathematical setting, the principle lying behind the SADM method
can be extended to the following: Retaining the idea of drawing subsystems of the
original problem, we consider the following algorithm:

• Draw m points X (i), i = 1, . . . , m in � independent and identically distibuted
(i.i.d.) with distribution μ.
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• Solve the m ×n least-squares sub-problem by determining β minimizing the func-
tion

R
n � β �→

m∑

i=1

| f (X (i)) −
m∑

j=1

β jγ j (X (i))|2. (2.5)

• Approximate the expectation β̄ of the random variable β by a Monte-Carlo method
and analyse its distribution.

More precisely, we define X := (X (1), . . . , X (m)) and the functions F : �m → R
m

and 
 : �m → L(Rm, R
n) by the formulae

∀i = 1, . . . , m, Fi (x (1), . . . , x (m)) = f (x (i)) (2.6)

and

∀i = 1, . . . , m, ∀ j = 1, . . . , n, 
i j (x (1), . . . , x (m)) = γ j (x (i)). (2.7)

The random vector β then minimizes the function

β �→ ‖F(X) − 
(X)β‖2

2
,

where ‖ · ‖
2

is the standard Euclidean norm on R
m .

Under the assumption that 
T (X)
(X) is invertible almost surely (a.s.),

β = R(X)F(X) := ((
T 
)−1
T )(X)F(X). (2.8)

The expectation of β is then given by the formula

β̄ := Eβ =
∫

�m

((
T 
)−1
T F)(x (1), . . . , x (m)) dμ(x (1)) ⊗ · · · ⊗ dμ(x (m)). (2.9)

Our algorithm consists in using the Monte-Carlo method to compute the previous
expectation: we approximate β̄ by

β̄N = 1

N

N∑

i=1

βi , (2.10)

where βi , i ≥ 1 are i.i.d. realizations of the random vector β ∈ R
n , obtained by (2.8)

from i.i.d. realizations of the random n × m matrix 
(X).
Of course, one expects that β̄ should converge to the solution of the least square

problem (2.4) when m → +∞. This indeed can be easily proved under the additional
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assumption that f and γ j , 1 ≤ j ≤ n belong to L2(�). By the strong law of large
numbers,

1

m
(
(X)T 
(X))i j = 1

m

m∑

k=1

γi (X (k))γ j (X (k)) (2.11)

converges P-a.s. to (〈γ, γ T 〉L2)i j when m → +∞. Similarly,

1

m
(
(X)T F(X))i = 1

m

m∑

k=1

γi (X (k)) f (X (k)) (2.12)

converges P-a.s. to (〈γ, f 〉L2)i . Consequently, if the matrix 〈γ, γ T 〉L2 is invertible,

β =
(

1

m

T (X)
(X)

)−1 1

m

(X)T F(X) (2.13)

converges P-a.s. to α given by (2.4) when m → +∞.
However, our goal is not to analyse more finely this convergence, as we are con-

cerned with situations where the least square problem (2.1) is ill-posed or computation-
ally unfeasible due to the high dimension of the problem. In the opposite, considering
the case where m is small in comparison with the dimension of � (M in the case
of SADM) should reduce the computational cost, provided that the efficiency of the
Monte-Carlo approximation is good. To express the fact that we are in a regime where
m is small, we assume in the following that m ≤ Cn for some constant C (typically
m = n + 2 or m = 2n for practical applications).

Therefore, to make sure that the previous algorithm is efficient, we have to verify
the following points:

(1) The random variable β has finite expectation and variance. Here the bounds may
depend on n, but not on the cardinal of � (M in the SADM description above).
This condition is crucial to ensure the convergence of a Monte-Carlo method and
the approximability of β̄. In addition, the smaller is the variance, the faster the
Monte-Carlo approximation converges to β̄.

(2) The average β̄ is a good alternative to the solution of the original problem (2.1)
in the sense that β̄ − α = O(‖ρ(a)‖ ) where ρ(a) is the residue (2.2). In other
words, if f is close to a linear combination of the functions γ the residue will
be small and the standard least-square approximation will be efficient. In this
situation, β̄ will also lead to a good approximation, and be close to the solution
α. On the other hand, when the residue is large, β̄ and α may differ, but in this
situation the approximation of f by a linear combination of the functions of γ is
poor in any case.

In Sect. 3 we give various conditions that warrant the latter requirements. In partic-
ular, we study the consistency of the algorithm, give conditions ensuring the conver-
gence of the Monte Carlo method, and analyze the computational cost. In the specific
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instance where 
(X)T 
(X) has the Wishart distribution, all computations can be made
explicitly, and we obtain precise estimates and an optimal choice of the parameter m.
The two values m = n + 2 and m = 2n are of specific interest in this situation. In
addition, we prove that the choice m = n leads to a random variable β with infinite
expectation, which partly explains the Cauchy-like distributions observed in [1] with
the SADM method.

2.3 The algorithm in the non-invertible case

In practice, the almost sure invertibility of 
T (X)
(X) cannot be guaranteed—
and obviously not for problems of the form (c), where all the random variables
X (1), . . . , X (m) may be equal with positive probability.

In a more general setting, we, hence, restrict ourselves to realizations of X , such
that matrix 
(X) is sufficiently well conditioned, in the following sense: Denoting by
s1(
(X)) the smallest eigenvalue of the symmetric positive matrix 
(X)T 
(X), we
only consider realizations of X , such that s1(
(X)) is greater than some threshold σ ,
which may depend on n and m. In this case, rather than approximating (2.9), we will
estimate the conditional expectation

β̄σ := E
σ β = E[ β | s1(
(X)) > σ ] (2.14)

by

β̄σ
N = 1

N

N∑

i=1

βσ
i , (2.15)

where the βσ
i are obtained from a sequence of i.i.d. realizations of the random vector

β ∈ R
n in (2.8), from which have been removed all realizations such that s1(
(X)) ≤

σ . Note that (2.10) is a particular case of (2.15) for σ = 0, provided that P(s1(
(X)) =
0) = 0.

Again, such a method will be of interest in terms of computational cost if m is on the
order of magnitude of n (in all the applications considered herein, m = n+2 or m = 2n
will be sufficient) and if P(s1(
(X)) > σ) is not too small—because drawing a reali-
zation of X such that s1(
(X)) > σ requires an average number P(s1(
(X)) > σ)−1

of realizations of X .
From the perspective of precision, this method will perform well if the variance of

β conditionally on {s1(
(X)) > σ } has an appropriate behavior with respect to n and
m, and if β̄σ defined in (2.14) provides a good approximation of the solution of the
original least-squares problem.

The specific case where the 
(X)T 
(X) is not a.s. invertible is studied in Sect. 4,
where we give various conditions that warrant the latter requirements. The instance
where 
(X) has subgaussian entries (which covers the Wishart case mentionned
above) is then studied in more details and leads again to optimal choices of m, N
and σ .
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3 The invertible case

In all this section, we assume that the matrix 
(X)T 
(X) is a.s. invertible.

3.1 Preliminary results

Before studying the algorithm of Sect. 2.2, let us define for q ∈ [2,+∞]

Kq(
) :=
[

E
1

s1(
(X))
q
2

] 2
q

, (3.1)

where 
(X) is the random matrix defined by (2.7) and with the usual convention that
K∞(
) = ‖s1(
(X))−1‖L∞ . Note that Kq(
) depends on n and m.

The proof of the next lemma is given in Appendix A.

Lemma 3.1 Let p ∈ [1,∞] and g ∈ Lp(�). Let us define the function G from g as
F is defined from f in (2.6). Let also R(X) be the random matrix defined in (2.8).

(a) Assume that Kq(
) < +∞ where q is such that q−1 + p−1 = 1. Then we have

E‖R(X)G(X)‖
2

≤ √
nm

√
Kq(
)‖g‖

Lp(�)
. (3.2)

(b) Assume that p ∈ [2,∞] and that Kq(
) < +∞ where q is such that 2q−1 +
2p−1 = 1. Then we have

E‖R(X)G(X)‖2

2
≤ nm2 Kq(
)‖g‖2

Lp(�)
. (3.3)

The next result is a first consequence of this lemma. We recall the definition of β̄

in (2.9) and that ρ(a) denotes the residue (2.2) associated with the function f and the
coefficients a j , j = 1, . . . , n.

Proposition 3.2 Let a = (a j )
n
j=1 ∈ R

n and m ≤ Cn for some constant C. Assume

thatρ(a) ∈ Lp(�)and Kq(
) < +∞ for some p ∈ [1,+∞]and with q−1+p−1 = 1.
Then there exists a constant C(n) depending on n such that

E‖β − a‖
2

≤ C(n)‖ρ(a)‖
Lp(�)

. (3.4)

Proof By definition of R(X), and as 
(X)T 
(X) is invertible, we have

R(X)
(X)a = a.

Hence

β − a = R(X)F(X) − R(X)
(X)a = R(X)ρ(a)(X). (3.5)
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where ρ(a)(X) is defined from ρ(a) as F was defined from f in (2.6). The result then
follows from Lemma 3.1 (a) with C(n) = √

nm
√

Kq(
). ��

3.2 Average and variance

The following result is an immediate consequence of Proposition 3.2. It gives condi-
tions on f and 
 to ensure that the random variable β has finite expectation, and thus
that the Monte Carlo approximation a.s. converges to β̄ when N → +∞.

Corollary 3.3 Let m ≤ Cn for some constant C and assume that f ∈ Lp(�) and
Kq(
) < +∞ for some p ∈ [1,+∞] and with q−1 + p−1 = 1. Then there exist a
constant C(n) depending on n such that

E‖β‖
2

≤ C(n)‖ f ‖
Lp(�)

.

In order to estimate the convergence rate of the algorithm, we need to construct con-
fidence regions with asymptotic level (less than) η for the Monte Carlo approximation
of β̄. We are going to consider confidence regions of the form [a1, b1]×· · ·×[an, bn],
by taking each [ai , bi ] as a confidence interval of asymptotic level η/n for the i-th
coordinate βi of β. Note that more precise asymptotic confidence regions exist—see
for instance [12]—but the previous confidence region is more convenient for compu-
tation. Note also that non-asymptotic estimates could be obtained using Berry-Essen-
type inequalities—see for instance [13].

This leads to the choice

bi − ai = 2x(n, η)
√

Var(βi )/N , ∀i ∈ {1, . . . , n}

where N is the number of draws in (2.10), and where x(n, η) > 0 is the solution of

1√
2π

+∞∫

x(n,η)

e−u2/2du = η

2n
. (3.6)

In this case, the Euclidean diameter of the confidence region is bounded by

2x(n, η)
√

Tr(Cov(β))/N , (3.7)

where Cov(β) is the covariance matrix of the random vector β, defined by

Cov(β) := E[(β − Eβ)(β − Eβ)T ].

The next result gives bounds on the quantity Tr(Cov(β)), which, in view of (3.7),
controls the rate of convergence of the Monte-Carlo approximation.
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Proposition 3.4 Let m ≤ Cn for some constant C and assume that ρ(β̄) ∈ Lp(�)

and Kq(
) < +∞ for some p ∈ [2,+∞] and with 2p−1 + 2q−1 = 1. Then there
exist a constant C(n) depending on n, such that

Tr(Cov(β)) ≤ C(n)‖ρ(β̄)‖2

Lp(�)
. (3.8)

Proof Let g = ρ(β̄) and define G from g as F is defined from f by (2.6). Then

Tr(Cov(β)) = E‖β − β̄‖2

2
= E‖R(X)G(X)‖2

2
.

The result, hence, follows from Lemma 3.1 (b) with C(n) = nm2 Kq(
). ��
These results show that the convergence of our algorithm relies on an assumption

of the form Kq(
) < +∞, which corresponds to the finiteness of a negative moment
of the random variable s1(
(X)). Such an assumption is clearly problem-dependent
and has to be checked in each specific problem considered. Conditions ensuring this
property when q < +∞ are given in Appendix B and are used to handle the specific
case of Wishart matrices in Sect 3.5.

Note that, under the assumptions of this section, the condition Kq(
) is unlikely to
be satisfied when q = +∞. Indeed, since 
T (X)
(X) is assumed a.s. invertible, the
measure μ must have no atom, and hence � is continuous (i.e. not denumerable). If
we assume in addition that the functions γ j are regular on �, so are the eigenvalues of

T (x)
(x) as a function of x = (x (1), . . . , x (m)) ∈ �m . Since the smallest eigenvalue
is 0 when x (1) = · · · = x (m), we deduce that P(s1(
(X)) < η) > 0 for all η > 0,
which means that K∞(
) = ∞. The way to handle the case q = ∞ is explained in
Sect. 4.

3.3 Link with the least square approximation

Formula (2.9) proposes an alternative solution β̄ to the solution α given by (2.4) of the
least-squares problem (2.1). We now provide estimates between these two solutions.

A precise error estimate depends on the tackled problem (see for instance Sect. 3.5).
Here, we give a general result.

Proposition 3.5 Assume that f, γ1, . . . , γn belong to L2(�) and that K2(
) < +∞.
Then there exists a constant C(n) such that

‖β̄ − α‖
2

≤ C(n)‖ρ(α)‖
L2(�)

. (3.9)

Proof Observing that ρ(α) ∈ L2(�), this is an immediate consequence of Proposi-
tion 3.2 and of the inequality ‖β̄ − α‖

2
≤ E‖β − α‖

2
. ��

In other words, the better f can be approximated by a linear combination of the
functions γ j , 1 ≤ j ≤ n, the closer the result of our algorithm is from the actual least
square approximation.
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3.4 Computational cost of the algorithm

Let ε be a required precision for the approximation of β̄ = Eβ by the Monte Carlo
simulation (2.10). For large N , using (3.7), we must take

N ∼ 4x(n, η)2ε−2Tr(Cov(β)).

Since, for all x > 0,

+∞∫

x

e−u2/2du ≤ 1

x

+∞∫

x

ue−u2/2du = e−x2/2

x
, (3.10)

we deduce from (3.6) that, for n/η large enough,

x(n, η)2 ≤ 2 log
n
√

2

η
√

π
(3.11)

In addition, each step of the algorithm requires to evaluate the matrix 
(X)T 
(X)

and the vector 
(X)T F(X) and to invert the matrix 
(X)T 
(X). The cost of these
operations is of order Cn2m.

Hence, we see that the cost of the algorithm is of order

Cε−2mn2 log n Tr(Cov(β)).

Under the hypothesis of Proposition 3.4 and using the explicit expression of C(n)

obtained in the proof of this proposition, the computational cost can be bounded by

Cε−2m3n3 log n Kq(
)‖ρ(β̄)‖2

Lp(�)
(3.12)

for 2p−1 + 2q−1 = 1.
It may be observed that this cost depends only on n and m—and not the dimension

of �. Moreover, it depends on the least-squares residue of the problem (2.1). In the
event where f is close to a linear combination of the functions γ j , the algorithm is,
therefore, cheaper (and, by Proposition 3.5, more precise). As a consequence, the cost
of our algorithm is driven by the quality of the original least-squares approximation
in Problem (2.1).

3.5 The Wishart case

Let us now consider the case where � = R
n ,

dμ(x) = (2π)−n/2 exp(−‖x‖2

2
/2)dx1 . . . dxn
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and γ j (x) = x j for j ∈ {1, . . . , n}—i.e. linear interpolation. In this case, the random
vectors X (i) are standard n-dimensional Gaussian vectors, the matrix 
(X) is a m × n
matrix with i.i.d. standard Gaussian entries and the law of the matrix 
(X)T 
(X) is
the so-called Wishart distribution—see e.g. [12].

The joint distribution of its eigenvalues is known explicitly and can be found for
example in [12, p. 534]. In particular, 
(X)T 
(X) is a.s. invertible if m ≥ n. The
explicit density of the eigenvalues has been used to obtain estimates on the law of
the smallest eigenvalue of such matrices in [14–16]. These results allow us to obtain
explicit estimates in the Wishart case, proved in Appendix B. We shall restrict here to
the case where f and ρ(β̄) belong to L∞(�), and we refer to Appendix B for further
estimates.

Under the previous assumptions, the conditions of Corollary 3.3 and Proposition 3.4
are satisfied for all m ≥ n + 2. The computational cost is (asymptotically) minimal
for the choice m = 2n and the corresponding computational cost is bounded by

Cε−2n5 log n‖ρ(β̄)‖2

L∞ (3.13)

for an explicit constant C independent of n, where ε is the required precision of the
algorithm.

In addition, the consistency error of Proposition 3.5 is bounded by

C ′n‖ρ(α)‖
L∞

for a constant C ′ independent of n.
We, hence, see that the values m = n + 2 and m = 2n are of specific interest in

terms of convergence and computational cost. Although the Wishart case corresponds
to very simple approximation problems, this result gives valuable clues about the way
parameters should be chosen in our algorithm. These specific values of m are numer-
ically tested in the example of the three-point charge model of water developed in
Sect. 5, where improvements of the SADM method are considered.

4 The general case

Let us now consider the general case where 
(X)T 
(X) is not assumed to be a.s.
invertible.

Fix σ > 0. We denote by E
σ (resp. Covσ ) the expectation (resp. covariance matrix)

conditionally on the event {s1(
(X)) > σ }. As an approximation of the solution of
the least-squares problem, we will examine the conditional expectation

β̄σ = E
σ (β). (4.1)

As will appear below, our algorithm always converges for any σ > 0. As in the
invertible case, its performance relies on precise estimates on convergence, consis-
tency and computational cost, given below. Optimal computations will then be detailed
in the specific instance where the matrix 
(X) has independent sub-Gaussian entries.
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4.1 Consistency, convergence and computational cost

We first generalize Proposition 3.2: For all q ∈ [1,+∞], let

K σ
q (
) :=

[
E

σ 1

s1(
(X))
q
2

] 2
q

. (4.2)

Proposition 4.1 Let a j , j = 1, . . . , n be n numbers a j . Assume that ρ(a) ∈ Lp(�)

for some p ∈ [1,+∞], then

‖β̄σ − a‖
2

≤ E
σ ‖β − a‖

2
≤

√
nm

P(s1(
(X)) ≥ σ)1/p

√
K σ

q (
) ‖ρ(a)‖
Lp(�)

where q is such that q−1 + p−1 = 1.

Proof Using the inequality

E
σ ‖ρ(a)(X)‖ p

1
≤

E‖ρ(a)(X)‖ p

1

P(s1(
(X)) ≥ σ)

in (A.3), the proof is exactly the same as that put forth in Lemma 3.1 and Proposi-
tion 3.2. ��
Note that, by definition of E

σ , for all q ∈ [1,∞],

K σ
q (
) ≤ σ−1. (4.3)

In particular, taking a = 0 in the previous result implies that conditional expec-
tation (4.1) is always well defined for σ > 0 as soon as f ∈ Lp(�) for some p ∈
[1,+∞].

The following result generalizes Proposition 3.4 to the case where σ > 0. Its proof
is very similar to that of Proposition 3.4. We will, hence, omit it here.

Proposition 4.2 Assume that the function ρ(β̄σ ) ∈ Lp(�) for p ∈ [2,+∞]. We have

Tr(Covσ (β)) ≤ nm2

P(s1(
(X)) ≥ σ)2/p
K σ

q (
) ‖ρ(β̄σ )‖2

Lp(�)
(4.4)

where q is such that 2q−1 + 2p−1 = 1.

Although the trivial inequality (4.3) always allows one to infer explicit bounds from
the previous results, there are cases where optimal estimates on K σ

q (
) are much
better. Since our performance analysis relies heavily on precise estimates on K σ

q (
),
it is desirable to obtain conditions for better estimates. Such conditions are given in
Proposition B.2 in Appendix B, and will be used to handle the sub-Gaussian case
described in the next subsection.
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We now consider the cost of the algorithm: Let β(σ) denote a random variable
having the law of β conditioned on {s1(
(X)) ≥ σ }. The cost of the algorithm is
determined by

• the number N of simulations of β(σ) needed to ensure that the diameter of the
confidence region for the Monte Carlo estimation of E(β(σ)) = E

σ (β) = β̄σ is
smaller than a given precision ε. To control this, we use the upper bound on the
confidence region diameter given by (3.7), where η is the level of confidence of
the approximation;

• the average number of draws of the random variable X needed to simulate a real-
ization of β(σ), which is 1/P(s1(
(X)) ≥ σ). Note that a draw corresponds to
simulating a nm-dimensional random variable.

• the computation of the n × n matrix 
(X)
(X)T , which is of order n2m — all
other computational costs, including the cost of the computation of s1(
(X)) or
the inversion of 
(X)T 
(X), are of a smaller order with respect to the dimension
n of the problem, provided that m ≥ n.

Consequently, the cost of the algorithm is bounded by

C N P(s1(
(X)) ≥ σ)−1(nm + n2m)

for some constant C > 0. As

N ∼ 4x(n, η)2ε−2Tr(Covσ (β)),

because of (3.11), the cost can be bounded by

Cε−2n2m log n P(s1(
(X)) ≥ σ)−1Tr(Covσ (β)).

Thus, if ρ(β̄σ ) ∈ Lp(�) for p ∈ [2,+∞], because of Proposition 4.2, the cost is
bounded by

Cε−2n3m3 log n P(sn(
(X)) ≥ σ)
−1− 2

p K σ
q (
) ‖ρ(β̄σ )‖2

Lp(�)

for some constant C > 0, where 2q−1 + 2p−1 = 1.
We, hence, can see that the choice of an optimal threshold σ has to be balanced

to optimize the ratio between K σ
q (
) and the probability P(sn(
(X)) ≥ σ) at some

appropriate powers.
Again, explicit bounds may depend on the tackled problem. Hereafter, we develop

the particular instance where 
(X) is a matrix with independent sub-Gaussian entries.

4.2 The sub-Gaussian case

We recall that the convergence of the algorithm holds for any choice of σ > 0. The goal
of this section is to study the behaviour of the computational cost in the subgaussian
case as a function of σ and m.
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We consider the case where � = R
n ,

dμ(x) = ⊗n
i=1dν(xi )

for some probability measure ν on R, and γ j (x) = h(x j ) for j ∈ {1, . . . , n} for some
function h on R. This is tantamount to the case of an approximation of the function f
on R

n by a linear combination of functions depending on only one variable.
In this case, it is clear that all the entries of matrix 
(X) are i.i.d. Let us assume

that these random variables are sub-Gaussian, i.e.

∀t > 0, ν({x ∈ R : |h(x)| > t}) ≤ 2 exp(−t2/R2)

for some R > 0. Such is the case, in particular if h is bounded or if ν has compact
support and h is continuous on the support of ν. Rudelson and Vershynin [17] have
recently obtained estimates on the distribution of s1(
(X)) in the subgaussian case,
optimal in the sense that they are consistent with the explicit bounds in the Wishart
case.

Using these results, under the assumption that f and ρ(β̄) belong to L∞(�) and
taking σ = an for some constant a > 0, computations in Appendix B prove that the
optimal choice for m in terms of (asymptotic) computational cost is m = 2n, and we
have the same estimates on the computational cost and the consistency as in Sect. 3.5.

This shows that, choosing conveniently σ , the computational cost has the same
behaviour as is the Wishart case. In addition, the result in terms of computational cost
in n appears to be relatively unaffected by the choice of σ . In particular, the specific
value of the constant a such that σ = an only has an influence on the constant C
in (3.13).

5 Improvement of the SADM method

The statistical analysis of distributed multipoles (SADM) algorithm put forth in [1]
corresponds to a problem of the form (c), where (α j )

n
j=1 represent the unknown mul-

tipoles borne by the n particles, and γ j (x) = 1/‖x − x j‖ the electrostatic potential
functions, where x1, . . . , xn denote the positions of the particles. The space � is made
of M points in the three-dimensional Cartesian space, lying away from the atomic
positions, with M >> n.

However, more computationally intensive than the least-squares scheme, this picto-
rial approach provides a valuable information as to whether the atomic multipoles are
appropriately defined, depending on how spread out the corresponding distributions
are. For instance, description of the molecular electrostatic potential of dichlorodifluo-
romethane (CCl2F2) by means of a simple point-charge model yields a counterintuitive
Cδ−–Xδ+ bond polarity—where X=Cl or F, blatantly violating the accepted rules of
electronegativity differences. Whereas the least-squares route merely supplies crude
values of the charge borne by the participating atoms, the SADM method offers a
diagnosis of pathological scenarios, like that of dichlorodifluoromethane. In the latter
example, the charge centered on the carbon atom is indeterminate, as mirrored by its
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markedly spread distribution [1]. The crucial issue of buried atoms illustrated here
in the particular instance of CCl2F2 can be tackled by enforcing artificially the cor-
rect bond polarity by means of hyperbolic restraints [7]. Violations of the classical
rules of electronegativity differences may, however, often reflect the incompleteness
of the electrostatic model—e.g. describing an atomic quadrupole by a mere point
charge. Addition of atomic dipoles to the rudimentary point-charge model restores the
expected, intuitive Cδ+–Xδ− bond polarity [1].

In this section, we revisit the prototypical example of the three-point charge model
of water. The molecular geometry was optimized at the MP2/6-311++G(d, p) level
of approximation. The electrostatic potential was subsequently mapped on a grid of
2,106 points surrounding the molecule, at the same level of theory, including inner-
shell orbitals. All the calculations were carried out with the Gaussian 03 suite of
programs [18]. Brute-force solution of the least-squares problem (2.1), employing the
Opep code [19], yields a net charge of −0.782 electron-charge unit (e.c.u.) on the oxy-
gen atom—hence, a charge of +0.391 e.c.u. borne by the two hydrogen atoms, with a
root-mean square deviation between the point-charge model regenerated and the quan-
tum-mechanical electrostatic potential of 1.09 atomic units, and a mean signed error
of 51.1 %. This notoriously large error reflects the incompleteness of the model—a
simple point charge assigned to the oxygen atom being obviously unable to describe
in a satisfactory fashion the large quadrupole borne by the latter.

On account of the C2v space-group symmetry of water, only one net atomic charge
would, in principle, need to be determined—the point charges borne by the two hydro-
gen atoms being inferred from that of the oxygen atom. Inasmuch as the SADM
scheme is concerned, this symmetry relationship translates to a single equation to
be solved per realization or experiment. Without loss of generality, two independent
parameters will, however, be derived from the electrostatic potential, the point charges
borne by the two hydrogen being assumed to be equal. Furthermore, in lieu of solv-
ing the individual

(2,106
2

)
systems of 2 × 2 linear equations, incommensurable with

the available computational resources, it was chosen to select randomly 500,000 such
systems.

The running averages of the charge borne by the oxygen atom are shown in Fig. 1
as a function of the number of individual realizations, for the SADM algorithm with
n = Ns points and its proposed enhancement, using 2, 4 and 8 additional grid points
per realization—with the notations utilized in the previous section, the latter translates
to m = Ns + 2, Ns + 4 and Ns + 8. From the onset, it can be seen that the SADM
scheme yields the worst agreement with the target value derived from the least-squares
problem (2.1), and that inclusion of supplementary equations to the SADM algorithm
rapidly improves the accord. However minute, this improvement is perceptible as new
grid points are added to the independent realizations. Equally perceptible is the con-
vergence property of the running average, reaching faster an asymptotic value upon
addition of grid points. Congruent with what was established previously, the present
set of results emphasizes that the SADM method cannot recover the value derived
from the least-squares equations. They further suggest that convergence towards the
latter value will only be achieved in the limit where the number of added points coin-
cides with the total number of grid points minus the number of parameters to be
determined—i.e. one unique realization.
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Fig. 1 Running average of the point charge, Q00, borne by the oxygen atom of water (Ns = 2 parameters)
as a function of the number of independent realizations, wherein systems of 2 × 2 (SADM), 4 × 2, 6 × 2
and 10 × 2 linear equations are solved. The thick, dark horizontal line at Q00 = −0.782 e.c.u. corresponds
to the solution of the least-squares problem.

Not too surprisingly, closer examination of the corresponding charge distributions
in Fig. 2 reveals that as additional grid points are added to the individual realizations,
not only does the width of these distributions narrow down, but the latter are pro-
gressively reshaped. As was conjectured in [1], the SADM algorithm yields Cauchy
distributions, which is apparent from Fig. 2. Improvement of the method alters the
form of the probability function, now closer to a normal distribution. Interestingly
enough, the slightly skewed shape of the distributions, particularly visible on their
left-hand side — as a probable manifestation of the incompleteness of the electro-
static model, precludes perfect enveloping by the model distributions, either Cauchy–
or Gaussian–like.

Put together, the present computations reinforce the conclusions drawn hitherto,
contradicting in particular the illegitimate assumption that the SADM and the least-
squares solutions might coincide [1]. From a numerical standpoint, however, the results
obtained from both strategies appear to be reasonably close, thereby warranting that
the SADM algorithm should not be obliterated, as it constitutes a valuable pedagogical
tool for assessing the appropriateness of electrostatic models.

6 Conclusion

In this work, a probabilistic approach to high-dimensional least-squares approxima-
tions has been developed. Originally inspired by the SADM me-thod introduced
for the derivation of distributed atomic multipoles from the quantum-mechanical
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Fig. 2 Normalized distributions of the charge, Q00, borne by the oxygen atom of water (Ns = 2 parameters)
obtained from 500,000 independent realizations, wherein systems of 2 × 2 (SADM), 4 × 2, 6 × 2 and
10 × 2 linear equations are solved (black curves). The light and dark curves correspond, respectively, to
numerically fitted Cauchy and Gaussian distributions

electrostatic potential, this novel approach can be generalized to a wide class of least-
squares problems, yielding convergent and efficient numerical schemes in those cases
where the space of approximation is very large or where the problem is ill-conditioned.

This novel approach constitutes a marked improvement over the SADM method.
Complete analysis of the numerical algorithm in general cases, in terms of both compu-
tational effort and optimal error estimation, relies on open and difficult issues prevalent
to random matrix problems.

Appendix A: Proof of Lemma 3.1

We denote by ‖ · ‖
F

the Schur–Frobenius norm on n × m matrices

‖A‖2

F
=

m∑

i=1

n∑

j=1

a2
i j .

where A = (ai j )1≤i≤n,1≤ j≤m . With this notation, we have

‖(AT A)−1 AT ‖2

F
= Tr((AT A)−1 AT A(AT A)−1) = Tr((AT A)−1) ≤ n

s1(A)
. (A.1)
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In addition, for any v = (v1, . . . , vm) ∈ R
m , we have

‖Av‖2

2
=

n∑

i=1

∑

1≤ j,k≤m

ai jv j aikvk

≤ 1

2

⎛

⎝
∑

i, j,k

a2
i j |v jvk | +

∑

i, j,k

a2
ik |v jvk |

⎞

⎠

≤ ‖A‖2

F
‖v‖

1
‖v‖∞ ≤ ‖A‖2

F
‖v‖2

1
, (A.2)

where we used the inequality |bi j bik | ≤ 1
2 (b2

i j + b2
ik).

With the notation of Lemma 3.1, using (A.2) and (A.1), we have

‖R(X)G(X)‖
2

≤ √
n s1(
(X))−1/2‖G(X)‖

1
.

Taking the expectation and using Hölder’s inequality, we get

E‖R(X)G(X)‖
2

≤ √
n
√

Kq(
)
(
E‖G(X)‖ p

1

)1/p
. (A.3)

Now, Y �→ (E|Y |p)1/p defines a norm on the set of random vectors on � with finite
p-th-order moment. We, hence, obtain

(
E‖G(X)‖ p

1

)1/p =
(

E

(
m∑

i=1

|g(X (i))|
)p)1/p

≤
m∑

i=1

(
E|g(X (i))|p

)1/p = m‖g‖
Lp(�)

,

and this yields Lemma 3.1 (a).
Lemma 3.1 (b) is obtained from similar computations.

Appendix B: Estimates on random matrices

B.1 On the finiteness of Kq(
)

As seen in Propositions 3.4 and 3.5, the convergence and the consistency of our algo-
rithm rely on assumptions of the form Kq(
) < +∞, where Kq(
) is given by (3.1).
These assumptions correspond to the finiteness of a negative moment of the random
variable s1(
(X)). The following proposition provides a condition on the distribution
of s1(
(X)) to ensure such integrability properties.
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Proposition B.1 Let Y be a random variable satisfying the following estimate: There
exist constants δ > 0 and γ > 0 such that

∀ε ≥ 0, P(Y ≤ ε) ≤ (δε)γ . (B.1)

Then, for any 0 < r < γ ,

E(Y −r ) ≤ δr

1 − r/γ
. (B.2)

Proof The proof is based on the following integration by parts, where
∫ ∞

0 h(x)dP(Y ∈
[0, x)) denotes the Stieltjes integral of the measurable function h with respect to the
Stieltjes measure on [0,∞) associated with the non-decreasing function x �→ P(Y ∈
[0, x)).

E(Y −r ) =
∞∫

0

x−r dP(Y ∈ [0, x))

=
∞∫

0

r x−r−1
P(Y ∈ [0, x))dx

≤ r

∞∫

0

x−r−1((δx)γ ∧ 1)dx .

If r < γ ,

∞∫

0

x−r−1((δx)γ ∧ 1)dx = 1

r

(
δr

1 − r/γ

)
,

which entails (B.2). ��
Of course, the property (B.1) can be strongly problem-dependent. In general situa-

tions, this is related to difficult problems on random matrices, which, to our knowledge,
have not been solved yet. However, explicit computations are possible in the specific
instance where 
(X)T 
(X) has the Wishart distribution (see Sect. 3.5 and below).

In the case where the matrix 
T (X)
(X) is not a.s. invertible, the method described
in Sect. 4 consists in taking expectations conditionally to {s1(
(X)) > σ } for some
σ > 0. A quantitative analysis of our method relies on estimates on K σ

q (
) defined
in (4.2) (see Propositions 4.1 and 4.2). The following result generalizes Proposition B.1
to the case where σ > 0. Its proof is very similar to that of Proposition B.1. We will,
hence, omit it here.
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Proposition B.2 Fix σ ≥ 0 and assume that random variable Y satisfies the following
estimate: There exist constants δ and γ such that

∀ ε ≥ σ, P(Y ≤ ε) ≤ (δε)γ . (B.3)

Then, for any r �= γ , if 0 < σ < δ−1,

E(Y −r | Y ≥ σ) ≤ δr

1 − (δσ )γ

(
1

1 − r/γ
+ (δσ )−(r−γ )

1 − γ /r

)
. (B.4)

This result is used to obtained explicit estimates on our algorithm in the case where
the matrix 
(X) has sub-Gaussian entries (see Sects. 4.2 and B.3).

B.2 Explicit estimates in the Wishart case

The goal of this section is to prove the following result.

Proposition B.3 In the Wishart case (see Sect. 3.5), assume that f ∈ Lp(�) and
ρ(β̄) ∈ Lp(�) with p > 2. Then, the convergence of the algorithm (in the sense that
Tr(Cov(β)) < +∞, see Proposition 3.4) holds if

m > n + p + 2

p − 2
.

In the case where ρ(β̄) ∈ L∞(�), this condition corresponds to m ≥ n + 2 and
the computational cost of the algorithm is bounded by

Cε−2 n3m4 log n

(m − n + 1)(m − n − 1)
‖ρ(β̄)‖2

L∞ ,

where ε is the required precision and the constant C is independent of n and m. The
optimal value m∗ of m in the previous bound satisfies

m∗ ∼ 2n

when n → +∞, and the corresponding computational cost is bounded by

C ′ε−2n5 log n‖ρ(β̄)‖2

L∞ .

In addition, the consistency error of Proposition 3.5 is bounded by

C ′′n‖ρ(a)‖
L∞ .
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Our computations are based on the following estimate on the law of the smallest
eigenvalue of Wishart matrices [16, Lemma 3.3], which reads with our notation as
follows. For all m ≥ n ≥ 2, let

k = m − n + 1.

The density p(x) of s1(
(X)) then satisfies

Ln,me−nx/2x
k
2 −1 ≤ p(x) ≤ Ln,me−x/2x

k
2 −1, ∀x > 0, (B.5)

where

Ln,m = 2
k
2 −1�(m+1

2 )

�( n
2 )�(k)

, (B.6)

where � is the Gamma function, defined for all x > 0 by

�(x) =
+∞∫

0

e−t t x−1dt.

Lemma B.4 For all m ≥ n ≥ 2, the random variable Y = s1(
(X)) satisfies (B.1)
for

γ = m − n + 1

2
= k

2

and δ = e2 m

k2 .

Moreover, the constant γ above is the smallest such that (B.1) holds for all ε > 0
for some constant δ.

Proof This result is based on the following bounds for the Gamma function [16,
Lemma 2.7]. For all x > 0,

√
2π xx+ 1

2 e−x < �(x + 1) = x�(x) <
√

2π xx+ 1
2 e−x+ 1

12x .

These inequalities can be plugged into (B.6) to get that, for all ε > 0,

P(s1(
(X)) ≤ ε) ≤ n 2γ−1�(m−1
2 + 1)

�( n
2 + 1)2γ�(2γ )

γ

ε∫

0

xγ−1dx

≤
n
2 2γ

√
2π(m−1

2 )
m
2 e− m−1

2 + 1
6(m−1)

√
2π( n

2 )
n+1

2 e− n
2
√

2π(2γ )2γ+ 1
2 e−2γ

εγ
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≤ e1+ 1
6(m−1)

2
√

πγ

(m−1
2 )

m
2

( n
2 )

n−1
2

(
2e2ε

4γ 2e

)γ

.

Now,

(m−1
2 )

m
2

( n
2 )

n−1
2

=
(

m − 1

n

) n−1
2

(
m − 1

2

)γ

≤
(

1 + k − 2

n

) n
2
(

m − 1

2

)γ

≤ e
k−2

2

(
m − 1

2

)γ

= 1

e

(
e(m − 1)

2

)γ

.

Combining this inequality with the facts that m − 1 ≥ 1 and γ ≥ 1/2 yields

P(s1(
(X)) ≤ ε) ≤ e1/6

√
2π

(
e2(m − 1)

4γ 2 ε

)γ

≤
(

e2m

k2 ε

)γ

.

Because of (B.5), we have that p(x) ∼ Ln,m xγ−1 as x → 0. Therefore, one easily
sees that γ = k/2 is the minimal value of γ for (B.1) to holds. ��
Using this result and Proposition B.1, we immediately obtain the following:

Proposition B.5 Let m > n be given and assume that the random matrix 
(X)T 
(X)

associated with the function 
 defined in (2.7) follows a Wishart distribution. Let q
be such that

1 ≤ q < k = m − n + 1. (B.7)

Then we have

Kq(
) ≤ e2m

k2

(
1 − q

k

)− 2
q

(B.8)

where Kq is defined in (3.1).

Combining this result and the result of Proposition 3.4, ifρ(β̄) ∈ Lp(�)with p > 2,
the convergence of the algorithm is ensured if Kq < ∞ in (3.8) with 2p−1+2q−1 = 1.
This means, (see (B.7))

2 ≤ 2p

p − 2
< m − n + 1

or equivalently

m > n + p + 2

p − 2
.

123



J Math Chem (2011) 49:296–324 321

Assume still that ρ(β̄) ∈ L∞(�). Using (B.8) with q = 2, it can be seen in view
of (3.12) that the cost of the algorithm is bounded by

Cε−2n3m3 log n
m

k2

(
1 − 2

k

)−1

‖ρ(β̄)‖2

L∞ .

for some constant C independent of n and m. Using the notation γ = k/2, we can
rewrite this cost in term of γ as

C ′ε−2n3 log n
(n + 2γ − 1)4

γ (γ − 1)
‖ρ(β̄)‖2

L∞ .

To determine the optimal choice of m, let us now try to find the optimal number γ

that minimizes this cost. The derivative of this expression with respect to γ has the
same sign as

8γ (γ − 1) − (n + 2γ − 1)(2γ − 1) = 4γ 2 − 2(n + 2)γ + n − 1.

Since this quantity is negative if γ = 1/2, the only root of this polynomial greater
than 1 is given by

γ ∗ = n + 2 + √
n2 + 8

4
,

which is the optimal choice of γ in terms of computational effort. This yields an
optimal choice m∗ ∼ 2γ ∗ + n − 1. Note that for large n, we have γ ∗ ∼ n/2 and
m∗ ∼ 2n.

With this optimal choice, the computational cost of the algorithm can be written as

Cnε
−2 ‖ρ(β̄)‖2

L∞ with Cn ∼ Cn5 log n as n → +∞.

Considering a similar calculation with q = 1, we can easily see that the consistency
error of Proposition 3.2 for this choice of parameters can be bounded by

C ′
n‖ρ(a)‖

L∞ with C ′
n ∼ C ′n as n → +∞.

B.3 Explicit estimates in the sub-Gaussian case

The goal of this section is to prove the following result.

Proposition B.6 In the sub-Gaussian case (see Sect. 4.2), assume that f ∈ L∞(�)

and ρ(β̄) ∈ L∞(�). Then, there exists explicit constants A and B such that, if

σ = B2m2(
√

m − √
n − 1)2

A(m − n + 1)2 e−2Bm/(m−n+1),
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the computational cost of our algorithm is bounded by

Cε−2 n3m4 log n

(m − n + 1)(m − n − 1)
‖ρ(β̄)‖2

L∞ , (B.9)

where ε is the required precision and the constant C is independent of n and m. Again,
the optimal value m∗ of m in the previous bound satisfies m∗ ∼ 2n as n → +∞.

For such a choice of m, we obtain

σ ∼ C ′ n (B.10)

for an explicit constant C ′.

With our notations, Theorem 1.1 of [17] writes as follows: there exist explicit
constants A and B depending only on R such that, for all m ≥ n and all ε > 0,

P

(
s1(
(X)) ≤ ε(

√
m − √

n − 1)2
)

≤ (Aε)(m−n+1)/2 + e−Bm . (B.11)

Writing just like in Appendix B k for m − n + 1, it can be seen that

P(s1(
(X)) ≤ ε) ≤
( √

Aε√
m − √

n − 1

)k

+
(

e−Bm/k
)k

≤
( √

Aε√
m − √

n − 1
+ e−Bm/k

)k

.

Eq. (B.3), therefore, holds for Y = s1(
(X)) and

σ ≥ σ0 := B2m2(
√

m − √
n − 1)2

k2 A
e−2Bm/k,

δ = (1 + k/Bm)2 A

(
√

m − √
n − 1)2

and γ = k

2
.

Note that, since δσ0 = (1 + Bm/k)2e−2Bm/k < 1, the inequality in (B.3) is not
trivial and supplies some information on the law of s1(
(X)).

As in Sect. B.2, the inequality (B.4) can be combined with the results of Propo-
sitions 4.2 and 4.1 to obtain a precise error estimate and convergence bounds in this
case.

Such computations are, however, cumbersome because the optimal choice of σ

cannot be determined explicitly. Taking σ = σ0 as in Proposition B.6 and under the
assumption that ρ(β̄σ ) ∈ L∞(�), because of Proposition B.2, the computational cost
is smaller than
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Cε−2n3 log n‖ρ(β̄σ )‖2

L∞
m3δ

(1 − (δσ )γ )2

(
1

1 − 1/γ
+ (δσ )γ−1

1 − γ

)

If one assumes that (σ0δ)
γ → 0 as n → +∞, observing that

δ = (
√

m + √
n − 1)2(1 + k/Bm)2 A

k2 ≤ Cm

k2 ,

the cost is bounded from above by

Cε−2n3 log n
m4

γ (γ − 1)
‖ρ(β̄σ )‖2

L∞

for γ > 1. We recognize the same cost as in Sect. 3.5. The optimal choice of γ , there-
fore, behaves as n/2 as n → +∞—and for this choice we indeed have (σ0δ)

γ → 0,
which validates the previous computation. Therefore, for this choice of parameters,
the cost is bounded by

Cε−2n5 log n‖ρ(β̄σ )‖2

L∞

for some constant C > 0.
One can check that any other choice of σ yields the same order in n as n → +∞,

should one choose γ ∼ n/2.
It ought to be noted that these bounds do not allow one to pick σ = 0. As far as

we know, this seems to be an open and difficult question to prove that (B.11) holds
without the right-hand-side, additive term e−Bm . In particular, it requires additional
assumptions to hold—e.g. random variable h(Y ), where Y has law ν, has no atom,
i.e. that ν({h = y}) = 0 for all y ∈ R (otherwise, the matrix 
(X) could have m − n
identical rows, and, thus, have a rank less than n, with non-zero probability).
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